--description--
The mathematical term symmetric difference (△
or ⊕
) of two sets is the set of elements which are in either of the two sets but not in both. For example, for sets A = {1, 2, 3}
and B = {2, 3, 4}
, A △ B = {1, 4}
.
Symmetric difference is a binary operation, which means it operates on only two elements. So to evaluate an expression involving symmetric differences among three elements (A △ B △ C
), you must complete one operation at a time. Thus, for sets A
and B
above, and C = {2, 3}
, A △ B △ C = (A △ B) △ C = {1, 4} △ {2, 3} = {1, 2, 3, 4}
.
--instructions--
Create a function that takes two or more arrays and returns an array of their symmetric difference. The returned array must contain only unique values (no duplicates).
--hints--
sym([1, 2, 3], [5, 2, 1, 4])
should return [3, 4, 5]
.
assert.sameMembers(sym([1, 2, 3], [5, 2, 1, 4]), [3, 4, 5]);
sym([1, 2, 3], [5, 2, 1, 4])
should contain only three elements.
assert.equal(sym([1, 2, 3], [5, 2, 1, 4]).length, 3);
sym([1, 2, 3, 3], [5, 2, 1, 4])
should return [3, 4, 5]
.
assert.sameMembers(sym([1, 2, 3, 3], [5, 2, 1, 4]), [3, 4, 5]);
sym([1, 2, 3, 3], [5, 2, 1, 4])
should contain only three elements.
assert.equal(sym([1, 2, 3, 3], [5, 2, 1, 4]).length, 3);
sym([1, 2, 3], [5, 2, 1, 4, 5])
should return [3, 4, 5]
.
assert.sameMembers(sym([1, 2, 3], [5, 2, 1, 4, 5]), [3, 4, 5]);
sym([1, 2, 3], [5, 2, 1, 4, 5])
should contain only three elements.
assert.equal(sym([1, 2, 3], [5, 2, 1, 4, 5]).length, 3);
sym([1, 2, 5], [2, 3, 5], [3, 4, 5])
should return [1, 4, 5]
.
assert.sameMembers(sym([1, 2, 5], [2, 3, 5], [3, 4, 5]), [1, 4, 5]);
sym([1, 2, 5], [2, 3, 5], [3, 4, 5])
should contain only three elements.
assert.equal(sym([1, 2, 5], [2, 3, 5], [3, 4, 5]).length, 3);
sym([1, 1, 2, 5], [2, 2, 3, 5], [3, 4, 5, 5])
should return [1, 4, 5]
.
assert.sameMembers(sym([1, 1, 2, 5], [2, 2, 3, 5], [3, 4, 5, 5]), [1, 4, 5]);
sym([1, 1, 2, 5], [2, 2, 3, 5], [3, 4, 5, 5])
should contain only three elements.
assert.equal(sym([1, 1, 2, 5], [2, 2, 3, 5], [3, 4, 5, 5]).length, 3);
sym([3, 3, 3, 2, 5], [2, 1, 5, 7], [3, 4, 6, 6], [1, 2, 3])
should return [2, 3, 4, 6, 7]
.
assert.sameMembers(
sym([3, 3, 3, 2, 5], [2, 1, 5, 7], [3, 4, 6, 6], [1, 2, 3]),
[2, 3, 4, 6, 7]
);
sym([3, 3, 3, 2, 5], [2, 1, 5, 7], [3, 4, 6, 6], [1, 2, 3])
should contain only five elements.
assert.equal(
sym([3, 3, 3, 2, 5], [2, 1, 5, 7], [3, 4, 6, 6], [1, 2, 3]).length,
5
);
sym([3, 3, 3, 2, 5], [2, 1, 5, 7], [3, 4, 6, 6], [1, 2, 3], [5, 3, 9, 8], [1])
should return [1, 2, 4, 5, 6, 7, 8, 9]
.
assert.sameMembers(
sym(
[3, 3, 3, 2, 5],
[2, 1, 5, 7],
[3, 4, 6, 6],
[1, 2, 3],
[5, 3, 9, 8],
[1]
),
[1, 2, 4, 5, 6, 7, 8, 9]
);
sym([3, 3, 3, 2, 5], [2, 1, 5, 7], [3, 4, 6, 6], [1, 2, 3], [5, 3, 9, 8], [1])
should contain only eight elements.
assert.equal(
sym([3, 3, 3, 2, 5], [2, 1, 5, 7], [3, 4, 6, 6], [1, 2, 3], [5, 3, 9, 8], [1])
.length,
8
);
--seed--
--seed-contents--
function sym(args) {
return args;
}
sym([1, 2, 3], [5, 2, 1, 4]);
--solutions--
function sym() {
var arrays = [].slice.call(arguments);
return arrays.reduce(function (symDiff, arr) {
return symDiff.concat(arr).filter(function (val, idx, theArr) {
return theArr.indexOf(val) === idx
&& (symDiff.indexOf(val) === -1 || arr.indexOf(val) === -1);
});
});
}
sym([1, 2, 3], [5, 2, 1, 4]);