--description--
You will be working on this project with our Gitpod starter code.
We are still developing the interactive instructional part of the Python curriculum. For now, here are some videos on the freeCodeCamp.org YouTube channel that will teach you everything you need to know to complete this project:
-
Python for Everybody Video Course (14 hours)
-
How to Analyze Data with Python Pandas (10 hours)
--instructions--
Create a function named calculate()
in mean_var_std.py
that uses Numpy to output the mean, variance, standard deviation, max, min, and sum of the rows, columns, and elements in a 3 x 3 matrix.
The input of the function should be a list containing 9 digits. The function should convert the list into a 3 x 3 Numpy array, and then return a dictionary containing the mean, variance, standard deviation, max, min, and sum along both axes and for the flattened matrix.
The returned dictionary should follow this format:
{
'mean': [axis1, axis2, flattened],
'variance': [axis1, axis2, flattened],
'standard deviation': [axis1, axis2, flattened],
'max': [axis1, axis2, flattened],
'min': [axis1, axis2, flattened],
'sum': [axis1, axis2, flattened]
}
If a list containing less than 9 elements is passed into the function, it should raise a ValueError
exception with the message: "List must contain nine numbers." The values in the returned dictionary should be lists and not Numpy arrays.
For example, calculate([0,1,2,3,4,5,6,7,8])
should return:
{
'mean': [[3.0, 4.0, 5.0], [1.0, 4.0, 7.0], 4.0],
'variance': [[6.0, 6.0, 6.0], [0.6666666666666666, 0.6666666666666666, 0.6666666666666666], 6.666666666666667],
'standard deviation': [[2.449489742783178, 2.449489742783178, 2.449489742783178], [0.816496580927726, 0.816496580927726, 0.816496580927726], 2.581988897471611],
'max': [[6, 7, 8], [2, 5, 8], 8],
'min': [[0, 1, 2], [0, 3, 6], 0],
'sum': [[9, 12, 15], [3, 12, 21], 36]
}
Development
Write your code in mean_var_std.py
. For development, you can use main.py
to test your code.
Testing
The unit tests for this project are in test_module.py
. We imported the tests from test_module.py
to main.py
for your convenience.
Submitting
Copy your project's URL and submit it to freeCodeCamp.
--hints--
It should pass all Python tests.
--solutions--
# Python challenges don't need solutions,
# because they would need to be tested against a full working project.
# Please check our contributing guidelines to learn more.