--question--
--text--
Fill in the blanks below to complete the build_model
function:
def build_mode(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size,
embedding_dim,
batch_input_shape=[batch_size, None]),
tf.keras.layers.__A__(rnn_units,
return_sequences=__B__,
recurrent_initializer='glorot_uniform),
tf.keras.layers.Dense(__C__)
])
__D__
--answers--
A: ELU
B: True
C: vocab_size
D: return model
A: LSTM
B: False
C: batch_size
D: return model
A: LSTM
B: True
C: vocab_size
D: return model
--video-solution--
3