Skip to main content

--question--

--text--

Fill in the blanks below to complete the build_model function:

def build_mode(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size,
embedding_dim,
batch_input_shape=[batch_size, None]),
tf.keras.layers.__A__(rnn_units,
return_sequences=__B__,
recurrent_initializer='glorot_uniform),
tf.keras.layers.Dense(__C__)
])
__D__

--answers--

A: ELU

B: True

C: vocab_size

D: return model


A: LSTM

B: False

C: batch_size

D: return model


A: LSTM

B: True

C: vocab_size

D: return model

--video-solution--

3