Skip to main content

--description--

In the last challenge we described a scenario in which a tree could become unbalanced. To understand the concept of balance, let's take a look at another tree property: height. Height in a tree represents the distance from the root node to any given leaf node. Different paths in a highly branched tree structure may have different heights, but for a given tree there will be a minimum and maximum height. If the tree is balanced, these values will differ at most by one. This means that in a balanced tree, all the leaf nodes exist within the same level, or if they are not within the same level they are at most one level apart.

The property of balance is important for trees because it is what determines the efficiency of tree operations. As we explained in the last challenge, we face worst case time complexity for heavily unbalanced trees. Self-balancing trees are commonly used to account for this issue in trees with dynamic data sets. Common examples of these include AVL trees, red-black trees, and B-trees. These trees all contain additional internal logic which re-balance the tree when insertions or deletions create a state of imbalance.

Note: A similar property to height is depth, which refers to how far a given node is from the root node.

--instructions--

Write two methods for our binary tree: findMinHeight and findMaxHeight. These methods should return an integer value for the minimum and maximum height within a given binary tree, respectively. If the node is empty let's assign it a height of -1 (that's the base case). Finally, add a third method isBalanced which returns true or false depending on whether the tree is balanced or not. You can use the first two methods you just wrote to determine this.

--hints--

The BinarySearchTree data structure should exist.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);

The binary search tree should have a method called findMinHeight.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.findMinHeight == 'function';
})()
);

The binary search tree should have a method called findMaxHeight.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.findMaxHeight == 'function';
})()
);

The binary search tree should have a method called isBalanced.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.isBalanced == 'function';
})()
);

The findMinHeight method should return the minimum height of the tree.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMinHeight !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.findMinHeight() == 1;
})()
);

The findMaxHeight method should return the maximum height of the tree.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMaxHeight !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.findMaxHeight() == 5;
})()
);

An empty tree should return a height of -1.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMaxHeight !== 'function') {
return false;
}
return test.findMaxHeight() == -1;
})()
);

The isBalanced method should return false if the tree is an unbalanced binary search tree.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.isBalanced !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.isBalanced() === false;
})()
);

The isBalanced method should return true if the tree is a balanced binary search tree.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.isBalanced !== 'function') {
return false;
}
test.add(10);
test.add(3);
test.add(22);
test.add(1);
test.add(4);
test.add(17);
test.add(32);
return test.isBalanced() === true;
})()
);

--seed--

--after-user-code--

BinarySearchTree.prototype = Object.assign(
BinarySearchTree.prototype,
{
add: function(value) {
function searchTree(node) {
if (value < node.value) {
if (node.left == null) {
node.left = new Node(value);
return;
} else if (node.left != null) {
return searchTree(node.left);
}
} else if (value > node.value) {
if (node.right == null) {
node.right = new Node(value);
return;
} else if (node.right != null) {
return searchTree(node.right);
}
} else {
return null;
}
}

var node = this.root;
if (node == null) {
this.root = new Node(value);
return;
} else {
return searchTree(node);
}
}
}
);

--seed-contents--

var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line

// Only change code above this line
}

--solutions--

var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line

// Only change code above this line
this.findMinHeight = function(root = this.root) {
// empty tree.
if (root === null) {
return -1;
}
// leaf node.
if (root.left === null && root.right === null) {
return 0;
}
if (root.left === null) {
return this.findMinHeight(root.right) + 1;
}
if (root.right === null) {
return this.findMinHeight(root.left) + 1;
}
const lHeight = this.findMinHeight(root.left);
const rHeight = this.findMinHeight(root.right);
return Math.min(lHeight, rHeight) + 1;
};
this.findMaxHeight = function(root = this.root) {
// empty tree.
if (root === null) {
return -1;
}
// leaf node.
if (root.left === null && root.right === null) {
return 0;
}
if (root.left === null) {
return this.findMaxHeight(root.right) + 1;
}
if (root.right === null) {
return this.findMaxHeight(root.left) + 1;
}
const lHeight = this.findMaxHeight(root.left);
const rHeight = this.findMaxHeight(root.right);
return Math.max(lHeight, rHeight) + 1;
};
this.isBalanced = function(root = this.root) {
if (root === null) {
return true;
}

if (root.left === null && root.right === null) {
return true;
}

if (root.left === null) {
return this.findMaxHeight(root.right) <= 0;
}

if (root.right === null) {
return this.findMaxHeight(root.left) <= 0;
}

const lHeight = this.findMaxHeight(root.left);
const rHeight = this.findMaxHeight(root.right);
if (Math.abs(lHeight - rHeight) > 1) {
return false;
}
return this.isBalanced(root.left) && this.isBalanced(root.right);
};
}