Skip to main content

--description--

Here will we create a function to invert a binary tree. Given a binary tree, we want to produce a new tree that is equivalently the mirror image of this tree. Running an inorder traversal on an inverted tree will explore the nodes in reverse order when compared to the inorder traversal of the original tree. Write a method to do this called invert on our binary tree. Calling this method should invert the current tree structure. Ideally, we would like to do this in-place in linear time. That is, we only visit each node once and we modify the existing tree structure as we go, without using any additional memory. Good luck!

--hints--

The BinarySearchTree data structure should exist.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);

The binary search tree should have a method called invert.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.invert == 'function';
})()
);

The invert method should correctly invert the tree structure.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.invert !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
test.invert();
return test.inorder().join('') == '877345348741';
})()
);

Inverting an empty tree should return null.

assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.invert !== 'function') {
return false;
}
return test.invert() == null;
})()
);

--seed--

--after-user-code--

BinarySearchTree.prototype = Object.assign(
BinarySearchTree.prototype,
{
add: function(value) {
function searchTree(node) {
if (value < node.value) {
if (node.left == null) {
node.left = new Node(value);
return;
} else if (node.left != null) {
return searchTree(node.left)
};
} else if (value > node.value) {
if (node.right == null) {
node.right = new Node(value);
return;
} else if (node.right != null) {
return searchTree(node.right);
};
} else {
return null;
};
}

var node = this.root;
if (node == null) {
this.root = new Node(value);
return;
} else {
return searchTree(node);
};
},
inorder: function() {
if (this.root == null) {
return null;
} else {
var result = new Array();
function traverseInOrder(node) {
if (node.left != null) {
traverseInOrder(node.left);
};
result.push(node.value);
if (node.right != null) {
traverseInOrder(node.right);
};
}
traverseInOrder(this.root);
return result;
};
}
}
);

--seed-contents--

var displayTree = (tree) => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line

// Only change code above this line
}

--solutions--

var displayTree = (tree) => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line
this.invert = function(node = this.root) {
if (node) {
const temp = node.left;
node.left = node.right;
node.right = temp;
this.invert(node.left);
this.invert(node.right);
}
return node;
}
// Only change code above this line
}